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Abstract

The ‘effective’ coupling loss factor (CLF) of a particular realization of two coupled subsystems within a
notional ensemble can differ from the ensemble average CLF. The variability in the effective CLF, or the
transmission efficiency, due to the modal behaviour of the source and receiver subsystems has been
examined for a system comprising two plates. A systematic investigation involving finite width semi-infinite
plates and finite plates has been performed using a combination of wave models and dynamic stiffness
approaches. By making both the source and receiver plates either finite or semi-infinite, it is shown that the
modal behaviour of both the source and receiver plates affects the energy transmission between the two
subsystems. Large variations in the energy transmission are found due to the modal behaviour of the finite
receiver plate. The damping of the receiver plate controls the magnitude of these variations. However,
variations in the energy transmission can also be attributed to the source subsystem modal characteristics,
as seen for a finite source plate coupled to a semi-infinite receiver plate. It is shown that this variation is due
to the predominance of particular angles of incidence at a given frequency. Damping of the source plate has
only a small influence. For the present example, using a damping loss factor of 0.1, the influence of source
and receiver modal behaviour is of a similar magnitude. For lower levels of damping the modal behaviour
of the receiver subsystem becomes relatively more important.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Since its beginnings over 40 years ago [1–3], Statistical Energy Analysis (SEA) has become quite
widely used to solve high-frequency noise and vibration problems in vehicles, buildings and other
structures [4–9]. The basic equation is the power balance equation [10]. Moreover, SEA is based
on the concept of an ensemble. It provides an ‘average’ result for a set of notionally similar
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structures with properties drawn from a random set [8,11]. The various SEA parameters, notably
the coupling loss factors (CLFs) that define the power flow between subsystems in terms of their
energies, are defined as the averages for the ensemble. Fahy [8,11] discusses the impracticalities
involved in measuring or predicting such ensemble averages for practical systems. Whilst this is
not fully proved or resolved, SEA practitioners, instead, use estimates of the frequency-average
response, on the assumption that this gives equivalent results. The frequency bandwidth has to be
wide enough so that the underlying SEA assumptions relating the time-averaged power flow and
the subsystem equilibrium energies are satisfied.
The successful application of SEA relies, therefore, amongst other things, on there being a large

enough number of modes in each subsystem within each frequency band of interest [10]. This is
equivalent to requiring that the acoustic or vibration field be diffuse [10]. It is also usually helpful
if the modal overlap is sufficiently large, generally at least unity [12].
CLFs are often derived in terms of the wave transmission efficiencies at junctions between semi-

infinite systems [13]. In this way the detail of the modes of individual systems are eliminated and
smooth functions result. Other approaches have been adopted to allow for the effect of low modal
overlap. Classically the CLFs are assumed to be independent of modal overlap, but at low modal
overlap Mace et al. [14–16] and Yap and Woodhouse [17] have shown that the CLFs for an
ensemble are dependent on modal overlap. For this situation, the results [14,16] show that the
wave estimates substantially over-predict the coupling power and the CLF.
The power balance equations can equally be applied to an individual system, that is one

member of the ensemble. In this case, the constants of proportionality between subsystem
energy and power flow are no longer based on the ensemble average. In this paper the term
effective CLF is used to refer to the CLF-like term appearing in the power balance equations for a
single system realization. Such a system has distinct modal behaviour, as a result of which,
the effective CLF may differ considerably from the ensemble average CLF. Putting this another
way, the SEA ensemble prediction may differ considerably from the actual response of a
given system.
Such deviations between the response of an individual realization and the ensemble average

tend to be smaller at high frequencies. This is due to the fact that, for a constant damping loss
factor, the modal overlap of most systems increases with increasing frequency. Additionally, the
common use of octave or one-third octave bands means that the number of modes in a band
becomes large at high frequencies. Conversely, at low frequencies the number of modes and the
modal overlap can be low, and the deviations between the individual realization and the ensemble
tend to be large.
Previous attempts to quantify the likely deviation between the behaviour of an individual

realization and the ensemble average have been given by Lyon and DeJong [10] and Fahy and
Mohammed [12]. Craik et al. [18] investigated the energy transmission at low frequencies in
building structures composed of thick walls and floors and demonstrated that the variation in the
point mobility of the receiver structure around its characteristic mobility was similar to the
variation of the effective CLF around its ensemble average. This observation was used to derive
an estimate for a confidence interval for the effective CLF. However, the question remains
whether it is only modal behaviour of the receiver that is important.
The objective of this paper is to show to what extent modal behaviour of the source or receiver

structure produces deviations in the effective CLF from the ensemble average CLF, due to the
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presence of a non-diffuse field. In order to try to isolate the effects of source and receiver modal
behaviour, models are considered in which the source and receiver are treated as finite or semi-
infinite in turn. Throughout, as a particular case, the coupling between two rectangular flat plates
joined along a common edge is considered. A combination of wave models and dynamic stiffness
approaches is used. Two finite plates are analyzed first in Section 2 using a dynamic stiffness
approach, to illustrate the effect of a non-diffuse field. A model of two semi-infinite plates of
common finite width is then introduced in Section 3, to investigate the effect of the finite width
compared with the usual results for plates of infinite width. Sections 4 and 5 consider a semi-
infinite source plate coupled to a finite receiver and a finite source plate coupled to a semi-infinite
receiver plate, respectively. By treating one or other plate as semi-infinite, its modal behaviour is
eliminated, leaving only the modal behaviour of the other plate. Thus the extent to which these
results deviate from those of two semi-infinite plates is a measure of the influence of the modal
behaviour of each plate in turn.

2. Two coupled finite plates

Consider first two uniform rectangular plates of equal width b; and lengths Li coupled along a
line that is simply supported and simply supported along the edges perpendicular to the joint, as
shown in Fig. 1. Only flexural vibration is included. The response of this system can be calculated
using a dynamic stiffness model for each plate [19,20].
The response amplitude wi of plate i at frequency o and position ðx; yÞ can be obtained from a

summation over components with n half-sine waves across the width b:

wiðx; yÞ ¼
XN
n¼1

WnðxÞ sin
npy

b

� �
; ð1Þ

where Wn is the amplitude of the nth component (i is omitted for clarity) and a time dependence of
eiot is assumed. This can be written in terms of the four free wave solutions for the plate

Wnðx; tÞ ¼
X4
r¼1

Anre
knrx ð2Þ
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Fig. 1. Two rectangular plates joined at a simple support with a point force F applied inside one plate.
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with Anr the wave amplitudes and the four components of wavenumber in the x direction given by

knr ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n7k2
f

q
; ð3Þ

where kn ¼ np=b is the component of wavenumber across the width and kf ¼ ðrho2=DÞ1=2 is the
free flexural wavenumber in the plate, with rh the mass per unit area and D the bending stiffness.
At low frequencies, kf okn and all the wavenumbers in Eq. (3) are real, so that only evanescent
waves occur. When kf Xkn; the wave of transverse order n ‘cuts on’, that is two values of knr

become imaginary and propagating waves can exist. The frequency at which kf ¼ kn is referred to
as the cut-on frequency and is given by

fcut�on ¼
p
2

n

b

� �2 D

rh

� �1=2

: ð4Þ

From Eqs. (1) and (2), the displacement wi; the rotation @wi=@x; the bending moment M and
the shear force S can each be written in terms of a sum over n of the four wave amplitudes Anr:
For the nth component, by writing AT

n ¼ fAn1An2An3An4g and uTn ¼ fWnð0ÞW 0
nð0ÞWnðLÞW 0

nðLÞg; it
is found that

un ¼ pnAn; ð5Þ

where

pn ¼

1 1 1 1

kn1 kn2 kn3 kn4

e1 e2 e3 e4

kn1e1 kn2e2 kn3e3 kn4e4

2
6664

3
7775 ð6Þ

where ei ¼ ekniL: Similarly, writing FTn ¼ f�Snð0ÞMnð0ÞSnðLÞ � MnðLÞg; it is found that

Fn ¼ qnAn; ð7Þ

where

qn ¼ D

k3
n1 � ð2� mÞk2

nkn1 ? k3
n4 � ð2� mÞk2

nkn4

�k2
n1 þ mk2

n ? �k2
n4 þ mk2

n

�ðk3
n1 � ð2� mÞk2

nkn1Þe1 ? �ðk3
n4 � ð2� mÞk2

nkn4Þe4
ðk2

n1 � mk2
nÞe1 ? ðk2

n4 � mk2
nÞe4

2
6664

3
7775 ð8Þ

with m the Poisson ratio. The wave amplitudes An can be eliminated from Eqs. (5) and (7) to give
the dynamic stiffness matrix for flexural vibrations of transverse order n:

Kn ¼ qnp
�1
n : ð9Þ

The two coupled plates of Fig. 1, with a point force at a location within the left-hand plate, can
be modelled using three dynamic stiffness elements, one either side of the force on the source plate
and the other representing the receiver plate. These elements are assembled in the usual way,
reduced by applying appropriate boundary conditions and then solved to obtain the response.
The outer edges are considered to be free. The point force is Fourier-decomposed into
components for each n and the response at each edge (node) for each n is obtained by inverting the
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reduced dynamic stiffness matrix. Then the wave amplitudes in each plate element can be found
from Eq. (5) and the response at a general interior position from Eq. (2).
Single point excitation is applied at a large number of randomly chosen points, avoiding

positions close to the edges. In order to simulate a ‘rain-on-the-roof’ type excitation, a total of 400
excitation points are used on each plate, which has been shown in a previous investigation to be
sufficient to obtain a reasonable estimate for the CLF reducing variations due to the particular
points chosen to less than 0.1 dB [19].
Each point force excites vibration in many different transverse orders, n; across the plate width.

For a given frequency, all such components whose cut-on frequency is below the frequency under
consideration need to be included. By exciting first one plate and then the other, in each case
averaging over 400 excitation points, a numerical simulation equivalent to the experimental Power
Injection Method [21] is performed. The response is numerically integrated to give accurate
predictions of the total strain energy in each plate, Ei: These are calculated for each transverse
order n and then summed. This allows the ‘effective’ CLFs, #Zij; to be determined from

#Z12
#Z21

( )
¼

1

o

E
ð1Þ
1 �E

ð1Þ
2

�E
ð2Þ
1 E

ð2Þ
2

" #�1
oZ2E

ð1Þ
2

oZ1E
ð2Þ
1

( )
; ð10Þ

where E1 and E2 are the total time-averaged energies, the superscript, (1) or (2), means the
excitation is applied to subsystem 1 or 2, and Zi is the damping loss factor of subsystem i: It is
assumed that Zð1Þij ¼ Zð2Þij ; i.e., that the CLFs are independent of which subsystem is being excited.
The effective CLFs for two coupled aluminium plates, calculated using Eq. (10), are shown in

Fig. 2. These have width b ¼ 1:0m, lengths L1 ¼ 0:5m, L2 ¼ 1:0m, thicknesses h1 ¼ 3:0mm,
h2 ¼ 2:0mm, Young’s modulus E ¼ 7:24	 1010 N/m2, the Poisson ratio m ¼ 0:333 and material
density r ¼ 2794 kg/m3. The damping loss factor Z1 ¼ Z2 ¼ 0:1: Although this is rather high for
material damping, it is chosen as more typical of a built-up structure and in particular to avoid a
situation of strong coupling where Z5Zij: Also shown are the results for two infinite plates ZijN;
determined from the diffuse field transmission coefficient tij;d : From Ref. [13] this can be
written as

ZijN ¼
cgibtij;d

poSi

; ð11Þ

where cgi is the group velocity of the source subsystem i, b is the junction length, Si is the surface
area of the source subsystem and o is the circular frequency (rad/s). A correction factor is applied
here to account for the relationship between tij;d and ZijN when there is high transmission [22], i.e.,

ZijN ¼
cgib

p oSi

2tij;d

ð2� tij;dÞ
: ð12Þ

The calculated effective CLFs agree well with the semi-infinite result ZijN at high frequencies.
At low frequencies, the predicted CLFs fluctuate considerably relative to ZijN; with differences of
up to a factor of 10 (10 dB). The first mode of plate 1 is at 12Hz and that of plate 2 at 6Hz, so
below these frequencies it would not be expected to be appropriate to use an SEA formulation.
The modal overlap becomes equal to unity at about 200Hz for plate 1 and 60Hz for plate 2. As
shown in Refs. [12,19] variations in CLF are considerably greater when the modal overlap is less
than unity.
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3. Two semi-infinite plates of finite width

Two coupled semi-infinite thin plates of finite width b are next considered in order to study the
restriction imposed by a finite width. The two plates are assumed to be simply supported along
their longitudinal edges, y ¼ 0 and b; and joined at the interface x ¼ 0; as shown in Fig. 3. At
x ¼ 0 a simple support is also assumed, as above. In this model, it is assumed that there is no
damping in the two semi-infinite plates.
Allowable wave solutions have a trace wavenumber in the y direction kn ¼ np=b for positive

integer values of n: Considering only flexural waves, the motion of plate 1 of order n has the form

w1ðx; yÞ ¼ ðAine
�k11x þ Are

k11x þ Anre
k21xÞ sinðknyÞ; ð13Þ

where Ain;Ar and Anr are the complex amplitudes of the propagating incident and reflected and
non-propagating nearfield waves at the interface, and k11 and k21 are the respective propagating
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and nearfield wavenumbers of plate 1. These wavenumbers are the roots obtained from the wave
equation for plate 1, i.e.,

k11 ¼ ðk2
n � k2

f 1Þ
1=2; k21 ¼ ðk2

n þ k2
f 1Þ

1=2; ð14Þ

where kf 1 ¼ ðr1h1o2=D1Þ
1=4 is the free bending wavenumber of plate 1 as before. The effective

angle of incidence y at the interface x ¼ 0 can be obtained from

y ¼ tan�1 kn

k11

����
����; ð15Þ

where y ¼ 0 corresponds to normal incidence.
Similarly for plate 2, the out-of-plane displacement of order n is

w2ðx; yÞ ¼ ðAte
�k12x þ Ante

�k22xÞ sinðknyÞ; ð16Þ

where At and Ant are the complex amplitudes of the propagating transmitted and non-
propagating nearfield waves at the interface, and k12 and k22 are the corresponding wavenumbers
of plate 2. These wavenumbers are the roots obtained from the wave equation for plate 2, similar
to Eq. (14).
Constraining the displacement along the joint, only rotational motion is allowed. Applying the

continuity and equilibrium conditions at the joint, one can determine the amplitude of each wave.
Substituting Eqs. (13) and (16) into these boundary conditions, the four unknown amplitudes

can be determined in terms of the amplitude of the incident wave Ain; as follows:

B1A1 ¼ C1; ð17Þ

where

B1 ¼

1 1 0 0

0 0 1 1

k11 k21 k12 k22

D1k
2
11 D1k

2
21 �D2k

2
12 �D2k

2
22

2
6664

3
7775; ð18Þ

A1 ¼
Ar

Ain

Anr

Ain

At

Ain

Ant

Ain

� �T
and C1 ¼ ½�1 0 k11 �D1k

2
11 �

T; ð19Þ

which can be solved by inversion of B1:
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Above the cut-on frequency for order n; power is transmitted by the propagating waves. The
nearfield waves do not transmit any energy at any frequency. In general, the transmitted powers
are proportional to the propagating wave amplitude squared, but also depend on the plate
properties. As the incident and reflected waves exist in the same plate, the transmission efficiency t
can be obtained most easily from

t ¼ 1�
Ar

Ain

����
����
2

: ð20Þ

Fig. 4 shows example results for a source plate of thickness 3mm and a receiver plate of
thickness 2mm, both of aluminium with no damping. The transmission efficiency only exists
above the cut-on frequency of both plates for any particular value of n: Below the cut-on
frequency of plate 1 (here 7.34Hz), no propagating incident wave will occur and it is meaningless
to calculate the transmission efficiency. Below the cut-on frequency in the receiver plate (here
4.89Hz), no energy will be transmitted into pure propagating waves in the receiver plate and the
transmission efficiency is zero. Thus the transmission efficiencies are zero up to the higher of the
two cut-on frequencies, which in this case is for plate 1. Then they rise gradually and at high
frequencies they tend to the result for normal incidence for semi-infinite plates, in this case 0.39 for
these thicknesses (3 and 2mm). This can be explained by consideration of the angle of incidence,
given in Eq. (15). At cut-on, kn ¼ kf and wave propagation occurs in a direction parallel to the
joint, i.e., k11 ¼ 0; whereas at high frequencies kn=k11-0 and y-0: Note that the cut-on
frequency for transverse order n is n2fcut-on,1; i.e., fcut-on,2=4fcut-on,1,fcut-on,3=9fcut-on,1, etc.
For two semi-infinite plates the transmission efficiency for oblique incidence is given in

Ref. [13]. For the case of grazing incidence y ¼ 7p=2; t12 is zero. As the frequency increases, the
direction of propagation gradually approaches normal, y-0 and t12; for a given n; tends to t12ð0Þ;
which is 0.39 for these values of plate thickness. As more orders across the plate width, n; cut on
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and are included in the incident field, this approximates more closely to a diffuse field, with the
incident energy not primarily being at a single angle of incidence. Thus, the sum over all such n
will tend to the diffuse field value of t12;d found for infinite plates.
Although the CLF is only defined for finite plates, the transmission efficiency, t; for two semi-

infinite plates can be used to estimate the CLF of an equivalent finite plate by using Eq. (11). The
CLF results, using these semi-infinite plate transmission efficiencies for particular transverse
orders, are shown in Fig. 5 for a source plate of area 0.5m2. Individual CLFs for particular orders
converge to the normal incidence result, which are individually greater than the infinite plate
diffuse result Z12N:

4. A semi-infinite plate of finite width coupled to a finite plate

4.1. Model

In this section, a model is considered in which a semi-infinite source plate is connected to a finite
receiver plate of length L2; as shown in Fig. 6. The right-hand edge of plate 2 is assumed to be free
to correspond to the finite plates considered in Section 2. This model is used to investigate the
influence of the modal behaviour of the receiver plate on the energy transmission. An incident
wave Ain is introduced in the semi-infinite source plate, as in Section 3. The transmission
efficiencies are evaluated for different thickness ratios of the source plate to the receiver plate and
the results are then considered in terms of the modal behaviour of the finite receiver plate.
The out-of-plane displacement of plate 2, given in Eq. (16), must be extended to include a

second reflected wave and a second nearfield wave.

w2ðx; yÞ ¼ ðAte
�k12x þ Ante

�k22x þ Ar2e
k12x þ Anr2e

k22xÞ sinðknyÞ; ð21Þ
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where Ar2 and Anr2 are the complex amplitudes of the reflected propagating and non-propagating
nearfield waves from the right-hand edge of plate 2. Applying the equilibrium and continuity
conditions at the joint and boundary conditions at the right-hand free edge of plate 2 to this
equation and Eq. (1), the six unknown amplitudes can be solved in terms of Ain: The additional
boundary conditions are that the bending moment and the shear force at the right-hand edge of
plate 2 are equal to zero.
Substituting Eqs. (13) and (21) into these boundary conditions gives

B2A2 ¼ C2; ð22Þ

where

B2 ¼

1 1 0 0 0 0

0 0 1 1 1 1

k11 k21 k12 k22 �k12 �k22

D1k
2
11 D1k

2
21 �D2k

2
12 �D2k

2
22 �D2k

2
12 �D2k

2
22

0 0 b12e
�
12 b22e

�
22 b12e

þ
12 b22e

þ
22

0 0 c12e
�
12 c22e

�
22 �c12e

þ
12 �c22e

þ
22

2
6666666664

3
7777777775
; ð23Þ

in which bij ¼ k2
ij � mjk

2
n; cij ¼ kijf�k2

ij þ ð2� mjÞk
2
ng; eþij ¼ ekijLj ; e�ij ¼ e�kijLj ;

A2 ¼
Ar

Ain

Anr

Ain

At

Ain

Ant

Ain

Ar2

Ain

Anr2

Ain

� �T
ð24Þ

and

C2 ¼ �1 0 �k11 �D1k
2
11 0 0

� �T
: ð25Þ

The transmission efficiency t of the joint between the two plates can be obtained from Eq. (20).
Fig. 7(a) shows results for an example case corresponding to the geometry of Fig. 1; here a

semi-infinite source plate of thickness 3mm, finite width 1m is coupled to a damped finite receiver
plate of thickness 2mm, length 1m, each of aluminium. Results are given for n ¼ 1: At low
frequencies, the transmission efficiency oscillates considerably around that for two semi-infinite
plates, whereas it converges to that for two semi-infinite plates ðt12 ¼ 0:42Þ as frequency increases.
It is noted that the transmission efficiency for two semi-infinite plates here differs from that shown
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in Fig. 4, t12ð0Þ ¼ 0:39: In the present case, it is assumed that there is no damping in the semi-
infinite source plate ðZ1 ¼ 0Þ; as before, but the receiver plate is damped with a loss factor
Z2 ¼ 0:1: This loss factor makes the bending wavenumber complex and affects the transmission
efficiency. The influence of the damping of the receiver plate is investigated in more detail in the
following section. The peaks and troughs in the transmission efficiency for the finite receiver plate
are related to the modal behaviour of the receiver plate. This is discussed further in Section 4.3.
Fig. 7(b) shows the CLF results for a transverse order n ¼ 1 estimated from the above

transmission efficiency by Eq. (11). The infinite plate diffuse result Z12N is also shown. In
converting the result to a CLF, the length of the source plate is taken as 0.5m. The CLF for the
finite receiver plate for n ¼ 1 converges to the normal incidence result as frequency increases and
these CLFs are greater than the infinite plate diffuse result Z12N: When the transmission
efficiencies are averaged for all possible transverse orders n; the CLF for the finite receiver plate
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converges to Z12N; at high frequency as shown in Fig. 8. Here Z12N includes the factor 2=ð2� tÞ as
in Eq. (12). It will be recalled that the modal overlap for the receiver plate is less than unity for
frequencies above 60Hz. At this frequency, the result in Fig. 8 deviates by up to 73 dB from the
semi-infinite result. Even at 300Hz the deviations are around 71 dB.

4.2. The influence of damping of the receiver plate

The influence of damping in the receiver plate was investigated for three damping values,
Z2 ¼ 0:03; 0.1 and 0.3, and the transmission efficiencies are shown in Fig. 9. As the damping of the
receiver plate increases, this plate dissipates more power so that less power is reflected back
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towards the joint. As a result of this, the transmission efficiency t12 oscillates less with frequency
and converges more quickly to that for two semi-infinite plates with the appropriate receiver
damping. The high-frequency asymptotes of the transmission efficiencies converge to that for the
undamped semi-infinite receiver plate, as damping of the receiver plate decreases, i.e., t12 ¼ 0:48;
0.42 and 0.40 for Z2 ¼ 0:3; 0.1 and 0.03, respectively, compared with 0.39 for the undamped case.
However, if there were no damping in the finite receiver plate, all the power flowing into the
receiver plate would be reflected out of it again and t would be zero.

4.3. The influence of the modal behaviour of the finite receiver plate

The transmission efficiencies depend on the ratio of the thicknesses of the source and receiver
plates. Fig. 10 shows the transmission efficiencies for both finite and infinite receiver plates of
thickness 2mm connected to an infinite source plate of thickness 0.67, 2 and 6mm. There is no
damping in the source plate whilst the receiver plate is damped with Z2 ¼ 0:1 in each case.
The transmission efficiency tends to a maximum asymptotic value when the thicknesses of the

two plates are equal and this asymptote reduces when the ratio of thicknesses is large or small. At
high frequencies, the transmission efficiency for the finite receiver plate converges to that for two
semi-infinite plates allowing for damping in the receiver plate.
The frequencies of the peaks vary only slightly as the thickness of the source plate varies,

whereas if the thickness of the receiver plate is changed this affects the peak frequencies according
to the modal behaviour of the receiver plate. In order to compare these results with the modal
behaviour, the natural frequencies of the uncoupled receiver plate have been calculated for two
sets of boundary conditions on the edge usually coupled to the infinite plate (simply supported or
clamped). The peaks in the transmission efficiency are found to occur between the natural
frequencies of the uncoupled receiver finite plate with either simply supported or clamped
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boundary condition at the interface, i.e., F–S–S–S or F–S–C–S, as shown in Fig. 11 for various
values of source plate thickness. At resonances of the finite receiver plate, its wave impedance is
low, producing a maximum in the transmitted energy, and hence in the power dissipated in the
receiver plate. At anti-resonances of the receiver plate, the transmission efficiency has a minimum.
When the thickness ratio h1=h2 is large, the infinite plate constrains the finite plate and the peaks
tend towards the natural frequencies for a clamped edge [F–S–C–S]; when the ratio h1=h2 is small,
the peaks tend towards those for a simply supported edge [F–S–S–S] with the source plate adding
no further constraint.

5. A finite plate coupled to a semi-infinite plate of finite width

5.1. Model

In order to evaluate the influence of the modal behaviour of the source plate on the CLF, one
can consider a finite source plate connected to a semi-infinite receiver plate, as shown in Fig. 12.
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These are connected by a simply supported edge as before. For this system, it is more appropriate
to simulate a ‘rain-on-the-roof’ type excitation as in Section 2 rather than a propagating source
wave as in Sections 3 and 4. As in the investigation of two finite plates in Section 2, 400 randomly
chosen excitation points are used on the finite source plate to minimize variability due to force
position. For each point force, this excites vibration in many different transverse orders, n; across
the plate width. For a given frequency, all such components have been included whose cut-on
frequency is below the frequency under consideration.
The equations of motion are solved using a dynamic stiffness approach, similar to that used in

Section 2. A harmonic point force is applied inside one plate. Thus the source plate is separated
into two dynamic stiffness elements at the longitudinal position of the applied force. The dynamic
stiffness matrix for the semi-infinite receiver plate [19] can be defined in terms of the positive-going
propagating and nearfield waves at the interface. As before, the global dynamic stiffness matrix of
the total system is derived by assembling the dynamic stiffness matrices of the two finite plates
either side of the force location and the semi-infinite plate and applying the continuity and
equilibrium conditions at the interfaces. The reduced dynamic stiffness matrix K; for flexural
motion only of order n; is a 5	 5 frequency-dependent matrix after allowing for the simple
support between the finite and semi-infinite plates. The response can be obtained from K�1F for
every frequency, where F is the applied force vector.
The CLF can be determined from the power balance Eq. (10). As in Sections 3 and 4, no

damping is included in the semi-infinite plate. Due to its infinite nature, energy is only transmitted
away from the joint and the term oZ21E

ð1Þ
2 representing power transmitted from plate 2 back to

plate 1, is zero. Since P
ð1Þ
1;diss ¼ oZ1E

ð1Þ
1 ; the effective CLF for a particular finite source plate is

obtained from

#Z12 ¼
P12

oE1
¼ Z1

P12

P1;diss

; ð26Þ

where the superscript (1) is omitted for clarity, P12 is the power transmitted from plate 1 to plate 2
and P1;diss is the power dissipated by plate 1.
To evaluate the effective CLF, one needs to calculate the strain energy of the source plate E1

and the power transmitted at the joint P12: As before, the response of the source plate is integrated
analytically to give an accurate measure of its strain energy [19]. The power transmitted at the
interface P12 is obtained directly from the internal moment amplitudes per unit length at the
interface calculated from the elements of the dynamic stiffness matrix, and the rotation
amplitudes. These are calculated for each transverse order n; integrated along the interface length
b analytically, and then summed.

5.2. Results

The dissipated and transmitted power for this system fluctuate due to the modal behaviour of
the finite source plate, as shown in Fig. 13. In each case these are averaged over 400 forcing points.
However the peaks in the two curves tend to coincide. The power transmitted becomes
significantly lower than the power dissipated as frequency increases. The sharp increase in the
upper curve at about 5Hz corresponds to the cut-on frequency of the receiver plate (4.89Hz)
below which the transmitted power is zero.
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The effective CLF from Eq. (26) is plotted in Fig. 14(a) accounting for transverse orders n ¼ 1
up to 4. Also shown is the result for n ¼ 1 to nmax; which includes all 46 transverse orders for all
frequencies. This result is shown again in Fig. 14(b) in one-third octave bands. At low frequencies,
the effective CLF fluctuates relative to that obtained from two semi-infinite plates, with a
deviation of 7 dB at 31.5Hz. As the number of transverse orders n increases and the sum over nmax

is taken, the effective CLF converges to the CLF for two semi-infinite plates. The modal overlap
of the source plate is equal to unity at about 200Hz, above which the deviations are less than 2 dB.
As damping of the source plate is increased, the level of the peaks in the energy E1 and the

power transmitted P12 decrease, as shown in Fig. 15. However damping has only a small effect on
the effective CLF, as shown in Fig. 16, as similar proportional reductions occur in both the energy
dissipated and the transmitted power.

5.3. The influence of the modal behaviour of the finite source plate

This section investigates the influence of the modal behaviour of the finite source plate on the
energy transmission in terms of the effective CLF. A parameter study is performed in which the
thickness ratio between the two plates is varied and the modal behaviour of the finite source plate
is examined.
First, the thickness of the finite source plate is varied between 3 and 1/3 times the thickness of

the semi-infinite receiver plate, which is fixed as 2mm. The influence of the thickness of the source
plate is shown in Fig. 17(a). The peaks and troughs can be related to the modal behaviour of the
source plate. This will be considered in more detail below. Energy transmission starts at the cut-on
frequency of the receiver plate, the thickness of which is kept the same, as indicated above, even if
the cut-on frequency for the source plate is greater than this. The maximum energy transmission
occurs when the two plates have the same thicknesses (see also Fig. 10).
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Next to investigate the influence on the modal behaviour due to the semi-infinite receiver
plate, the thickness of the finite source plate is fixed as 3mm and the thickness of the semi-
infinite receiver plate is varied between 1/3 and 3 times this. The effective CLFs are shown
in Fig. 17(b).
As before the energy transmission starts at the cut-on frequency of the semi-infinite receiver

plate. The energy transmission varies as the thickness of the receiver plate is changed. The
effective CLF fluctuates at low frequencies and converges to the result for the corresponding
infinite plate, as shown in Fig. 14. The peaks and troughs occur at similar frequencies as the
thickness of the semi-infinite receiver plate varies. These peaks can therefore be seen to depend on
the modal behaviour of the finite source plate, as the thickness of that plate is fixed. The natural
frequencies of an uncoupled source plate for different transverse orders, n and two different
boundary conditions along the edge usually joined to plate 2 have been determined. The first 12
such natural frequencies are marked in Fig. 18. Also shown is the ratio between the effective CLFs
for a finite source plate (h1 ¼ 3mm, L1 ¼ 0:5m, b ¼ 1m) coupled to a semi-infinite plate and the
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semi-infinite results, #Z12=Z12N: The natural frequencies are shown with different symbols for each
value of n: The upper figure gives the natural frequencies for a clamped edge and the lower figure
for a simply supported edge. When h2bh1; the semi-infinite receiver plate constrains the finite
source plate and the peaks tend towards the natural frequencies for a clamped edge [F–S–C–S];
when h25h1; the peaks tend towards those for a simply supported edge [F–S–S–S]. However, it is
also found that, whilst the first resonance corresponds to a peak in the effective CLF, the second
corresponds to a dip, the third to a peak and so on.
In Fig. 19, the effective CLF for a finite source plate and semi-infinite receiver plate is compared

with the CLF for two semi-infinite plates, for a diffuse field and for 4 transverse orders. Two sets
of results are given, corresponding to h1 ¼ 3mm, L1 ¼ 0:5m, b ¼ 1m, h2 ¼ 2mm and h1 ¼ 2mm,
L1 ¼ 1:0m, b ¼ 1m, h2 ¼ 3mm. Corresponding modes of the uncoupled source plate are shown,
in the first case for F–S–S–S and in the second case for F–S–C–S. The troughs in the effective CLF
correspond to the first resonance for a given n > 1 which in turn correspond approximately to the
cut-on frequency of the source plate for n > 1:
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These results can be understood as follows. At a resonance of the finite plate, the effective angle
of incidence is dominated by that corresponding to the mode. Consequently the effective CLF
follows closely that for the semi-infinite plates with the corresponding order n: The fluctuations in
the effective CLF in this case are therefore due to the predominance of particular angles of
incidence, not due to the direct influence of the modal behaviour of the source plate. This explains,
also, the relatively small influence of the damping of the source plate (Fig. 16).

6. Concluding remarks

The variability in the effective CLF, or the transmission efficiency, of finite coupled source and
receiver plates due to their modal behaviour, has been examined using a systematic investigation
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Fig. 18. The ratio between the effective CLFs for a finite plate (L1 ¼ 0:5m, h1 ¼ 3mm) coupled to a semi-infinite plate
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, h2 ¼ 6mm; –+–+–, h2 ¼ 9mm. The symbols denote natural frequencies of finite source plate for different
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involving both finite width semi-infinite plates and finite plates. A combination of novel wave
models and dynamic stiffness approaches has been used in the present paper, which enable a
comparison between wave estimates and modal contributions.
Previously, it had been surmised [18] that the modal behaviour of the receiving subsystem had

the predominant effect on the variability of the power flow, that of the source subsystem being
neglected. It is shown here that the modal behaviour of both the source and receiver plates affects
the energy transmission between two subsystems in the example considered. Large variability in
the effective CLF was found to occur due to the modal behaviour of the receiver plate, with peaks
occurring in the transmission efficiency at resonances of the receiver. The damping of the receiver
plate controls the magnitude of these variations.
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However, some variations in the effective CLF can also be attributed to the source subsystem
characteristics, not previously considered by Craik et al. [18], whose results were based on
measurements on building structures. By using simulations for a finite source plate coupled to a
semi-infinite receiver plate, variations in CLF are found that are considered to be due to the
predominance of particular angles of incidence at a given frequency. Damping of the source plate
has been found to have a smaller influence on controlling these fluctuations than for the receiver
plate resonances. Figs. 8 and 14(a) summarize these trends by comparing the effective CLFs found
for a finite receiver or a finite source plate. In this case, for Z ¼ 0:1; the variation in both curves is
similar and as more modes cut on the variability reduces due to the increase in modal overlap, as
expected. However, as damping is reduced, the effect of the receiver plate modes will increase
while that of the source plate modes will be largely unchanged [19], as seen in Figs. 9 and 16.
Finally, it may be noted that Mace found that at low modal overlap the CLFs are at a minimum

for rectangular plates, compared with irregular plates [15]. This is attributed to wave coherence or
localization of the global modes of the structure to one of the subsystems. It is possible that this
effect may limit the extent to which the results presented here may be generalized.
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